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1 Frostman’s Lemma, Product Dimension, Slices, and Pro-
jections

1.1 Frostman’s lemma

Let (X, ρ) be a compact metric space. We have shown the following.

Proposition 1.1. If
∑

i≥1 ci1Ei ≥ 1X and diam(Ei) < δ for all i, then∑
i

ci(diam(Ei))
α ≥ Oα(1) · Hαδ (X).

We used this to prove Frostman’s lemma:

Lemma 1.1 (Frostman). If mα(X) > 0 , then there s a measure µ ∈ P (X)α and c < ∞
such that µ(Br(x)) ≤ crα for all x, r.

Let’s go over the proof again, more carefully.

Proof. Pick δ > 0 such that Hδα(X) > 0. On C(X), define

p(f) := inf

∑
i≥1

ci(diam(Ei))
α :

∑
i≥1

ci1Ei ≥ f, diam(Ei) < δ, ci ≥ 0

 .

Observe:

• We can pick Ei = X, so p(f) <∞.

• If f ≤ 0, then p(f) = 0.

• p(tf) = tp(f) if t ≥ 0.

• p(f + g) ≤ p(f) + p(g)
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• p(1X) > 0 (bounded below by wmα(X)).

Define ` ∈ (R · 1X)∗ by `(1X) = p(1X). By Hahn-Banach and Riesz-representation, there
is a a bounded linear functional (i.e. a measure) µ ∈ C(X)∗ such that |

∫
f dµ| ≤ p(f)

for all f and µ(X) = p(1X). Note that if f ≤ 0, then
∫
f dµ ≤ p(f) = 0. So µ ≥ 0.

After normalizing by p(1X), we may assume that µ ∈ P (X). Let Br(x). Then µ(Br(x)) =
sup{

∫
f dµ : f ∈ C(X), f ≥ 0, f ≤ 1Br(x)}. For any such f , p(f) ≤ (2r)α (up to a

normalization constant).

Remark 1.1. In this proof, the Hahn-Banach theorem is being used as a sort of infinite-
dimensional linear optimization.

1.2 Dimension of products

Theorem 1.1. Let (X, ρX) and (Y, ρY ) be compact metric spaces. Let A ∈ BX and
B ∈ BY . Then

dim(A) + dim(B) ≤ dim(A×B) ≤ dim(A) + dimB(B).

Corollary 1.1. If dim(A) = dimB(A), then these are all equalities.

Remark 1.2. This inequalities can be strict.

Proof. Proof of the left inequality: We will actually show that ifmα(A) > 0 andmβ(B) > 0,
then mα+β(A × B) > 0. Assume that A anf B are compact.1 Then there exist measures
µ ∈ P (A)and ν ∈ P (B) such that µ(BX

r (x)) ≤ crα for all r ≤ rx0 and ν(BY
r (y)) ≤ crβ for

ll r ≤ ry0 . Let λ = µ× ν. Then equip X × Y with the box metric

ρ((x, y), (x′, y′)) := max{ρX(x, x′), ρY (y, y′)}.

We get

λ(BX×Y
r (x, y) = λ(BX

r (x)×BY
r (y)) ≤ c2r|alpharα, ∀r ≤ min{rX0 , rY0 }.

By the mass distribution principle, dim(A×B) ≥ α+ β.
Proof of the right inequality: Let α > dim(A) and β > dimB(B). Then there exists

(Ei)i such that A ⊆
⋃
iEi and

∑
i(diam(Ei))

|alpha < ε. The idea is to cover A × B
by strips with one side Ei and to find nice sets within these strips: For each i, choose a
covering Fi of B by sets of diameter ≤ diam(Ei) such that |Fi| ≤ diam(Ei)

−β. Consider
E = {Ei × F : i ≥ 1, F ∈ Fi}; note that diam(Ei × F ) ≤ diam(Ei) by the definition of the
box metric. Now A×B ⊆

⋃
E , and∑

(Ei,F )∈E

(diam(Ei))
α+β =

∑
i

(diam(Ei))
α|Fi|(diam(Ei))

β ≤
∑
i

(diam(Ei))
α.

1This assumption is only here because we have only proven Frostman’s lemma in this special case.
Frostman’s lemma is true for more general spaces.
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1.3 Slices and projections of α-regular sets

Definition 1.1. Let µ be a positive Borel measure on (X, ρ). Call it α-regular if there
exists some r0 > 0 and c <∞ such that µ(Br(x)) ≤ crα for all r ≤ r0.

Theorem 1.2. Let (X, ρX) and (Y, ρY ) be compact metric spaces, and let A ⊆ X×Y . Let
0 ≤ α ≤ β, and assume µ is α-regular on Y . For all y ∈ Y , let Ly = X × {y}. Then∫

mβ−α(A ∩ Ly) dµ(y) ≤ const ·mβ(A).

Here is an important special case:

Corollary 1.2. If X = Rn. Y = Rm, µ is Lebesgue measure, and α = m, then if
A ⊆ BRn×m, then dim(A ∩ Ly) ≤ max{0, dim(A)−m} for a.e. y.

Proof. Let A ⊆
⋃
iEi × Fi with

∑
i diam(Ei × Fi)β ≤ C. For any y, we have

A ∩ Ly ⊆
⋃

{i:y∈Fi}

Ei.

Now

mβ−α(A ∩ Ly) dµ(y) ≤
∑
i

(diam(Ei))
β−α

∫
1Fi(y) dµ(y)︸ ︷︷ ︸

=µ(Fi)≤const · diam(Fi)α

≤ const
∑
i

(diam(Ei × Fi))β−α+α

≤ const ·mβ(A).

Example 1.1. Let Cα ⊆ R with d = dim(Cα) = d(α). Then the Cantor dust set Cα ×
Cα ⊆ R2. The dimensions agree for this set, so diam(Cα × Cα) = 2d. IF y ∈ Cα, then
(Cα × Cα) ∩ Ly = Cα, so dim = d > 2d − 1. So maybe we should not be looking at this
with Lebesgue measure; we should look at it using a measure defined on the Cantor set.

Later, we will meet fractals coming from dynamics, where the exceptional set is empty
except in a few directions.

There is also a dual notion to measuring slices: measuring projections.

Theorem 1.3. If F ∈ BR2 and Pθ is a line in direction θ, then dim(PθF ) = min{1,dim(F )}
for a.e. θ.
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