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1 Frostman’s Lemma, Product Dimension, Slices, and Pro-
jections

1.1 Frostman’s lemma
Let (X, p) be a compact metric space. We have shown the following.

Proposition 1.1. If 2221 ¢ilg, > 1x and diam(E;) < § for all i, then

> ci(diam(E;))* > Oq(1) - Hg (X).

i
We used this to prove Frostman’s lemma:

Lemma 1.1 (Frostman). If mq(X) > 0, then there s a measure p € P(X)* and ¢ < oo
such that u(By(x)) < er® for all x,r.

Let’s go over the proof again, more carefully.

Proof. Pick 6 > 0 such that H3(X) > 0. On C(X), define

p(f) :=inf {Z c¢i(diam(E;))* : ZC'L']]‘Ei > f,diam(E;) < 6,¢; > 0} )
i>1 i>1
Observe:
e We can pick E; = X, so p(f) < oo.
o If f <0, then p(f) =0.
o p(tf) = tp(f) if £ > 0.

e p(f+9) <p(f)+p(9)



e p(1lx) > 0 (bounded below by wmq(X)).

Define £ € (R-1x)* by ¢(1x) = p(1x). By Hahn-Banach and Riesz-representation, there
is a a bounded linear functional (i.e. a measure) p € C(X)* such that | [ fdu| < p(f)
for all f and u(X) = p(1x). Note that if f < 0, then [ fdu < p(f) = 0. So pu > 0.
After normalizing by p(1x), we may assume that p € P(X). Let By(z). Then pu(B,(z)) =

sup{[ fdp : f € C(X),f > 0,f < 1B,(z)}- For any such f, p(f) < (2r)* (up to a
normalization constant). O

Remark 1.1. In this proof, the Hahn-Banach theorem is being used as a sort of infinite-
dimensional linear optimization.

1.2 Dimension of products

Theorem 1.1. Let (X,px) and (Y,py) be compact metric spaces. Let A € Bx and
B e By. Then

dim(A) + dim(B) < dim(A x B) < dim(A) + dimp(B).
Corollary 1.1. If dim(A) = dimpg(A), then these are all equalities.
Remark 1.2. This inequalities can be strict.

Proof. Proof of the left inequality: We will actually show that if mq(A4) > 0 and mg(B) > 0,
then ma4+5(A x B) > 0. Assume that A anf B are compact.! Then there exist measures
p € P(A)and v € P(B) such that u(BX(z)) < cr® for all 7 < 7% and v(BY (y)) < er? for
Lr <r§. Let \=p x v. Then equip X x Y with the box metric

p((z,y), (2", y")) == max{px (z, "), py (y,y')}.
We get
)\(B,,?(XY(CC, y) = )\(Bf((x) X Bf(y)) < CQ’I“‘CLlphCLT‘a, Vr < min{r())(,r%/}.

By the mass distribution principle, dim(A x B) > a + 3.

Proof of the right inequality: Let o > dim(A) and 8 > dimp(B). Then there exists
(E;); such that A C |, E; and Y, (diam(F;))lalpha < e. The idea is to cover A x B
by strips with one side E; and to find nice sets within these strips: For each 4, choose a
covering F; of B by sets of diameter < diam(FE;) such that |F;| < diam(FE;)™?. Consider
E={E; x F:i>1,F € F;}; note that diam(E; x F) < diam(E;) by the definition of the
box metric. Now A x B C |J€&, and

D (diam(E;))* =) (diam(F;))*|F| (diam(E;))? <) " (diam(E;))”. O
(Ei,F)e& 7 i

1 . . . . . .
This assumption is only here because we have only proven Frostman’s lemma in this special case.
Frostman’s lemma is true for more general spaces.




1.3 Slices and projections of a-regular sets

Definition 1.1. Let u be a positive Borel measure on (X, p). Call it a-regular if there
exists some ro > 0 and ¢ < oo such that p(B,(z)) < cr® for all r < rq.

Theorem 1.2. Let (X, px) and (Y, py) be compact metric spaces, and let A C X xY. Let
0 < a < B, and assume v is a-reqular on'Y . For ally €Y, let L, = X x {y}. Then

/mg_a(A N Ly) du(y) < const -mg(A).

Here is an important special case:

Corollary 1.2. If X = R". Y = R™, u is Lebesque measure, and o = m, then if
A C Bgnxm, then dim(AN Ly) < max{0,dim(A4) —m} for a.e. y.

Proof. Let A C |, E; x F; with ), diam(E; x F;)? < C. For any y, we have

AnL,c |J E.
{i:yeF;}

Now

mp-a(AN Ly du(y) < S (diam(E;))P— / 15, (y) duly)
1 N —— e’
=p(F;)<const - diam(F;)e

< const Z(diam(Ei x Fy))imete
i

< const -mg(A). O

Example 1.1. Let C, C R with d = dim(C,) = d(«). Then the Cantor dust set C, X
C, C R2. The dimensions agree for this set, so diam(C, x C,) = 2d. IF y € C,, then
(Ca x Cy) N Ly = Cq, so dim = d > 2d — 1. So maybe we should not be looking at this
with Lebesgue measure; we should look at it using a measure defined on the Cantor set.

Later, we will meet fractals coming from dynamics, where the exceptional set is empty
except in a few directions.
There is also a dual notion to measuring slices: measuring projections.

Theorem 1.3. If F' € Bg2 and Py is a line in direction 0, then dim(PpF') = min{1, dim(F')}
for a.e. 6.
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